
A Tracing Facility for Nonsmooth Model

Behavior

J. Utke

draft vers. hg:70d557e2d384:24

compiled on May 7, 2009 with

../OpenAD svn:170

Open64 svn:821

OpenADFortTk svn:954

OpenAnalysis svn:433

xercesc svn:46

xaifBooster svn:98

xaif svn:34

angel cvs:None

boost/boost svn:52832

Regression hg:204:8d0e8fa4936a

OpenADFortTk/Regression hg:97:5ead75baa378

OpenADFortTk/tools/SourceProcessing/Regression hg:11:dc031b148d7a

RevolveF9X hg:3:32019b4179be

Examples hg:21:bebddffd10ba

1 Introduction

The computation of derivatives in the context of optimization, parameter, or
state estimation and other uses relies on the assumption that the function com-
puted by the numerical model is in some sense “smooth”. This is true for the
approximation of derivative information with divided differences as well as the
application of automatic differentiation (AD). Griewank devotes an entire chap-
ter in [5] to the scenario of applying an AD tool to cases without differentiability.
In practice one observes various cases where the derivatives computed by AD
are useless because their numerical values grow beyond reasonable bounds [3, 2]
or even become NaNs.1 In the latter case one might have the option of letting
a suitable compiler generate code to detect floating-point exceptions to help
locate the origin of the problem. The AD tool ADIFOR [1] also has a built-in
option to detect such situations by adding checks to the generated code. In
the former case when no NaNs are created, however, it is difficult to detect what
feature of the numerical model causes the derivative values to explode. In the
following we introduce a facility to trace the model computation and locate cer-
tain programming constructs that have the potential to cause such behavior.
We aim at extracting information specific both to certain locations in the un-
derlying program and to certain data being computed during the execution of
the model.

Many numerical models exhibit nonsmooth behavior to reflect the modeled
1 An IEEE floating-point exception indicating “not a number”.

1

P0

P1

P5

P4 P2’

P2P3

Figure 1: A nonsmooth model with subdomains

problem, for instance a phase change in the modeled material, because the model
has distinct representations for certain subdomains or the nonsmooth effects are
an artifact of the numerical methods implemented in the model. In either case
one needs to be concerned about the validity of the derivative information and
attempt to locate the problem and find a remedy. The situation with distinct
subdomains is described in [6] to illustrate certain aspects of using Adol-C, and
we replicate it here in Fig. 1. The model is first evaluated at point P0. Relative
to P0 we distinguish the following cases.

P1 We stay in the interior of the same subdomain as P0.

P2 and P2’ We are in the interior of a different subdomain from P0.

P3 We are at a point where the model is continuous but not (Frechét) differ-
entiable.

P4 We are at a point where the model is not continuous.

P5 We are at a point where the model is not defined.

For Adol-C the most critical question is to determine whether a given execution
trace recorded for some point P0 may still be used for a different point P’ or else
into which of the five categories the point P’ falls that would necessitate a re-
recording of the execution trace and indicate whether the computed derivatives
may be valid only in the given direction. Adol-C itself provides an answer only
via a return code indicating the category. It does so by comparing the output
of tests and certain intrinsics recorded in the execution trace with the output
these same tests and intrinsics generate at the current evaluation point. Because
the execution trace is generated via operator overloading and is designed to
minimize the required storage, an indication of leaving the current subdomain
or computing a value at a point of nondifferentiability cannot be related to a
particular spot in the underlying program or a particular piece of data. However,
the idea is the same: tracking the behavior of certain programming constructs we
obtain an indication if we left the subdomain in which smooth model behavior
can be assumed. These critical programming constructs can be grouped as
follows.

2

1 subroutine head(x,y)

2 double precision :: x

3 double precision :: y

4

5 y=tan(x)

6

7 end subroutine

1 subroutine head(x,y)

2 double precision :: x

3 double precision :: y

4 !$openad INDEPENDENT(x)

5 y=tan(x)

6 !$openad DEPENDENT(y)

7 end subroutine

Figure 2: Simple example code (left), prepared for tracing (right)

nonsmooth intrinsics Some of the most obvious cases are max, min, and fabs.

conditional expressions The model may compute values in different branches
following a test, or a loop may have a different iteration count based on a
termination test.

As done in Adol-C, we aim at tracing the model behavior and detecting any
differences triggered by the programming constructs listed above that might
represent nonsmooth model behavior. Obviously a tracing facility such as the
one proposed here is most useful for numerical models that have

• a large source code base and

• a relatively long execution time

such that a manual inspection of the model – either by browsing the source code
or by running a simulation in the debugger to observe certain values – is too
tedious. Clearly such a use also requires some restrictions on the information
being collected, in order to reduce the amount of tracing data that has to be
dealt with.

2 Usage

The source transformation that provides the tracing facility is implemented in
the OpenAD framework [10]. The website

www.mcs.anl.gov/openad

provides details on downloading and building the tool chain.

2.1 A Simple Example

We assume a simple routine, see Fig. 2 (left), computing y = f(x) = tan(x)
implemented by head. We need to prepare the code for the activity analysis
by specifying the independent variables (here x) and the dependent variables
(here y) shown in lines 4 and 6 of Fig. 2 (right). In the following we assume the
OpenAD environment has been set up as described in [9], Sect. 2.2. For this
simple example we can use the following wrapper script.

3

www.mcs.anl.gov/openad

$OPENADROOT/bin/openad

The environment setup adds this directory to the PATH. All script options are
shown when it is invoked with the -h flag. It provides a simple recipe for the trac-
ing transformation that we can use in a straightforward case like this by calling

1 program driver

2 use OAD_active

3 use OAD_rev

4 use OAD_trace

5 implicit none

6 external head

7 type(active) :: x, y

8

9 x%v=.5D0

10 ! first trace

11 call oad_trace_init()

12 call oad_trace_open()

13 call head(x,y)

14 call oad_trace_close()

15

16 x%v=x%v+3.0D0

17 ! second trace

18 call oad_trace_open()

19 call head(x,y)

20 call oad_trace_close()

21

22 end program driver

Figure 3: Driver routine for the trans-
formed code shown in Fig. 5

openad -c -m t head.prepped.f90

The resulting Fortran output is con-
tained in a file called

head.prepped.xb.x2w.w2f.pp.f

and its contents is shown in Fig. 5.
In the transformed Fortran one finds
two versions of the code: one is the
original on line 28, and one is aug-
mented on lines 32–36. Which ver-
sion is being run depends on the value
of the components of our_rev_mode,
which is to be controlled by a driver
that calls head(x,y). A simple driver
is shown in Fig. 3. On line 11 a
generic initialization of the tracing
environment is performed. A first
trace is started on line 12. The call
to oad_trace_open opens a file called
oad_tr_001.xml and sets up the run-
ning mode oad_rev_mode referenced
on lines 26 and 30 of Fig. 5. In the
driver we then change the value at
which we compute head and open a
second trace, named oad_tr_002.xml.
The openad script links the required
runtime support files to the working directory, and all files can be compiled
with a makefile such as the one shown in Fig. 4. The contents of the trace
output files generated when running driver is shown in Fig. 6. Clearly the
tracing outputs are identical except for line 4, where we show the different out-
put for the respective smooth subdomain sd at which the tan intrinsic is being
evaluated. The interpretation of the subdomain of tan(x) is sd=k with integer
k = bx+π/2

π c, and in our example the change in the sd value indicates that we
moved from one smooth subdomain to another. We note that the subdomain is
computed when the intrinsic is called. Lines 2 and 3 are generated separately
before the call, in order to allow the generation of line number information and,
if necessary, information about the arguments; see also Sec. 4.2.

4

ifndef (F90C)
F90C=gfortran
endif
RTSUPP=w2f__types OAD_active OAD_rev OAD_trace
run: driver

./driver
driver: $(addsuffix .o, $(RTSUPP)) driver.o head.prepped.xb.x2w.w2f.pp.o

${F90C} -o $@ $^
head.prepped.xb.x2w.w2f.pp.f $(addsuffix .f90, $(RTSUPP)) : head.prepped.f90

openad -c -m t $<
%.o : %.f90

${F90C} -o $@ -c $<
%.o : %.f

${F90C} -o $@ -c $<
clean:

rm -f ad_template* OAD_* w2f__* iaddr*
rm -f head.prepped.xb* *.B *.xaif *.o *.mod oad_tr_* driver *~

.PHONY: run clean

Figure 4: Contents of a makefile to compile and link the example
.

2.2 Detailled Usage

The source code is transformed in stages in the same fashion as summarized in
the OpenAD Manual [9], Sect. 2.5. The differences in the tool chain are the
choice of the transformation algorithm in the xaifBooster component and the
selection of the runtime library in connection with the postprocessor templates.
The stages prior to the tracing transformation are as follows.

• Collecting all the model program sources into a single source code file;
declaration of independent and dependent program variables (see [9], Sect.
2.3)

• Canonicalizing (optional, see [9], Sect. 4.2.1)

• Parsing Fortran with the Open64 front-end (mfef90, see [9], Sect. 4.2.2)

• Translating the Open64 internal representation to xaif (whirl2xaif, see
[9], Sect. 4.2.3)

The steps following the core tracing transformation are as follows.

• Translating from xaif to the Open64 internal representation (xaif2whirl,
see [9], Sect. 4.2.3)

• Unparsing the Open64 internal representation into Fortran (whirl2f, see
[9], Sect. 4.2.2)

• Postprocessing (see [9], Sect. 4.2.4)

• Compiling and linking (see [9], Sect. 2.6)

5

1

2 SUBROUTINE head(X, Y)

3 use OAD_trace

4 use OAD_rev

5 use w2f__types

6 use OAD_active

7 IMPLICIT NONE

8 C

9 C **** Parameters and Result ****

10 C

11 type(active) :: X

12 type(active) :: Y

13 C

14 C **** Top Level Pragmas ****

15 C

16 C$OPENAD INDEPENDENT(X)

17 C$OPENAD DEPENDENT(Y)

18 C

19 C **** Statements ****

20 C

21

22 ! original arguments get inserted before version

23 ! and declared here together with all local variables

24 ! generated by xaifBooster

25

26 !$TEMPLATE_PRAGMA_DECLARATIONS

27

28 if (our_rev_mode%plain) then

29 ! original function

30 Y%v = OAD_TAN(X%v)

31

32 end if

33 if (our_rev_mode%tape) then

34 ! tracing

35 C!! requested inline of ’oad_trace_call’ has no defn

36 CALL oad_trace_call(’tan_scal’,5_w2f__i8)

37 C!! requested inline of ’oad_trace_ecall’ has no defn

38 CALL oad_trace_ecall()

39 Y%v = OAD_TAN(X%v)

40

41 end if

42 end subroutine head

Figure 5: Transformed code (fixed format) from input shown in Fig. 2 (left)

6

1 <Trace number="1">

2 <Call name="tan_scal" line="5">

3 </Call>

4 <Tan sd="0"/>

5 </Trace>

<Trace number="2">

<Call name="tan_scal" line="5">

</Call>

<Tan sd="1"/>

</Trace>

Figure 6: Output oad_tr_001.xml (left) and oad_tr_002.xml (right) generated
from running the driver in Fig. 3

2.2.1 The Tracing Transformation

The numerical model is now given as an xaif file to which we apply the tracing
transformation. Conceptually, the tracing transformation shares the following
aspects with other AD-related transformations implemented in OpenAD.

• Redeclaration of program variables using a special, active type these vari-
ables have been determined by the activity analysis to hold active values

• Transformation associated with this type change, for instance as applied
to calls to black-box subroutines

• Augmentation of the control flow graph, for instance to be able to count
loop iterations

The source code for the transformation can be found in inc and src under
$OPENADROOT/xaifBooster/algorithms/TraceDiff

with the top level driver routine being in driver/oadDriver.cpp. The transfor-
mation options associated with the tracing facility are as follows.
./oadDriver -i <inputFile> -c <intrinsicsCatalogueFile>
common options:

[-s <pathToSchema>]
XAIF schema path, defaults to directory that contains the input file

[-o <outputFile>] [-d <debugOutputFile>]
both default to std::cout

[-g <debugGroup>]
with debugGroup >=0 the sum of any of:
ERROR=0,WARNING=1,CALLSTACK=2,DATA=4,GRAPHICS=8,TIMING=16,TEMPORARY=32,METRIC=64
defaults to 0(ERROR)

[-G <format>] debugging graphics format, where <format > is one of:
ps - postscript format displayed with ghostview (default)
svg - scalable vector graphics format displayed in firefox

[-p "<list of symbols to forcibly passivate>"]
space separated list enclosed in double quotes

[-b] pessimistic assumptions for black box routines
[-v] validate the input against the schema
[-V] verbose xaif output
[-F <style>]

front-end decoration style, where <style> is one of:
OPEN64_STYLE,NO_STYLE
defaults to OPEN64_STYLE

[-h] print this help message
TypeChange options:

[-w "<list of subroutines with wrappers">]
space separated list enclosed in double quotes

[-r] force renaming of all non-external routines
TraceDiff options: no specific options here

7

As shown in Fig. 5, the transformation generates two versions of the input
code on a per subroutine basis. The first one is essentially the input containing
only changes related to the type change of active variables. The second version
is the actual tracing.

2.2.2 Runtime Support Files

The following files support the implementation of the tracing transformation.

ad template.f: the template file used by the postprocessor to inject the two
code versions created per subroutine into a control structure that makes
up the new subroutine body; a simple version of such a template file can
be found in

$OPENADROOT/runTimeSupport/simple/ad_template.trace.f

The name of the template file can be specified to the postprocessor script
multi-pp.pl by using -f <template_file_name> or specified in the source
code inside each subroutine body by using a pragma of the following for-
mat.

!$openad XXX Template <template_file_name>

If nothing is specified, the postprocessor expects a template file named
ad_template.f in the current working directory.

OAD trace.f90: located in $OPENADROOT/runTimeSupport/simple/ is the module
that contains the routines used to generate the trace xml output. For
instance, related to the tracing of the calls to the tan intrinsic, the module
contains procedures such as the following.
real(w2f__8) function oad_tan_d(x)
real(w2f__8) :: x
oad_tan_d=tan(x)
write(oad_trace_io_unit,’(A,I0,A)’) ’<Tan sd="’,INT((x+PiHalf)/Pi),’"/>’

end function

The routines to be called directly by the user are discussed in Sec. 2.2.3.

w2f types.f90 and iaddr.c: the generic support files needed by most OpenAD
transformed source code; the files can be found in

$OPENADROOT/runTimeSupport/all/

OAD active.f90 and OAD rev.f90: the definition for the active type and the
state controlling the version of the code to be executed; the files can be
found in

$OPENADROOT/runTimeSupport/simple/

Except for the template file listed as the first item, all other files are just com-
piled and linked with the transformed model source and a suitable driver.

8

2.2.3 Driver Routine

We assume some program logic (the driver) that initializes the input variables
of the model, executes the model computation itself, and then processes the
output values. That driver logic is the natural location for orchestrating the
tracing of the model. All the required elements to be added to the driver logic
are already given in the example in Fig. 3. The required modules to be USEd
are OAD_active and OAD_trace. A third module OAD_rev is used by OAD_trace

internally. The routines to be called by user in the driver are as follows.

oad trace init: initialize the tracing module by resetting the file counter

oad trace open: start a new trace; increment the file name counter

oad trace close: close a trace file opened with oad_trace_open

If the scope of the trace is smaller than the entire model computation (see also
Sec. 3.2), it may be necessary to place pairs of calls to oad_trace_open and
oad_trace_close inside the model source code.

3 Concepts

This section provides some details on the underlying concepts to better under-
stand the goal of the tracing facility and what it can and cannot accomplish.

3.1 Tracing and Activity Analysis

An important concept in AD is that of active values, that is, program data that
lies on a dependency path from the subset of inputs x to a subset of outputs
y. In a source transformation context the activity is determined by a data flow
analysis. Typically the dependence of a given value on x is referred to as being
varied, while y depending on a certain value is referred to as that value being
useful. In general we assume a model of the form

(y, q) = f(x, p) : IRn×s 7→ IRm×t .

The inputs p and the outputs q are assumed to be of no interest for the derivative
computation. Consequently any values that depend only on p or affect only q
are not active values and under certain conditions of no interest to the trace
we need to compare against. We note that this restriction is specific to the
AD context and is the distinguishing factor that separates our approach from
something that might otherwise be accomplished by using, for example, aspect-
oriented programming techniques.2 Typical examples for portions of the code
that do not involve active values is logic for debugging, logging, timing, or I/O.

2 To our knowledge an AOP system for Fortran does not exist.

9

Our approach relies on compile time activity analysis to determine the
active value set and source transformation to augment the critical program-
ming constructs by routines that generate the trace. Because of conserva-
tive assumptions regarding the aliasing of variables, there is a certain over-
estimate of the active value set. The overestimate could in theory be re-
duced by augmenting the static analysis with runtime data. Such runtime
augmentation has, however, the same principal problem as does the use of the
Adol-C trace. One will always have to check whether the runtime data is still

1 v = t + sin(a)

2 if (v .gt. 0.3)

3 then

4 a = a * 2

5 else

6 a = a * 3

7 end if

8 ...

Figure 7: A control flow decision de-
pending on a nonactive variable

valid once the point of evaluation
moves. In other words it would be
subject to the same nonsmooth model
behavior we are trying to detect. On
the other hand, clearly the activity
analysis requiring a value to be both
varied and useful can underestimate
the values for which tracing may be
desired. The example in Fig. 7 il-
lustrates the case of an active value
a being part of the computation of
some value p that itself is not active
presumably because it is “varied” but
not “useful”. Then v is used in an if-condition that changes the path through
the control flow graph for some subsequent computation of active values. Given
this scenario, one might arrive at various conclusions.

Rather than tracing critical constructs only for active values, one could de-
vise an extension to the notion of activity using the following definition.
Definition: A value is called indirectly useful if it is used in an address com-
putation that impacts the computation of active values.
Here we use the term “address computation” not only to cover the typical no-
tion of computing addresses in the program’s data segment but also to compute
addresses in the programs text segment determining the next instruction. The
instruction address computation is already illustrated by Fig. 7. An example
for the former kind of address computation is given in Fig. 8, where an ac-
tive value in variable a is used to determine an index i into a lookup table t,

1 i = int(a)

2 a = a * t(i)

Figure 8: An address computation into
a lookup table impacting the subsequent
computation

which then is used in subsequent ac-
tive computations. Unfortunately the
definition of “indirectly useful” can-
not be readily translated into a data
flow analysis and requires research
that goes beyond the scope of this pa-
per.

An alternative is to trace criti-
cal constructs for all varied values.
Clearly, this will increase the generated output significantly by including much
of the ancillary model logic (the aforementioned debugging, monitoring, etc.)
that the activity analysis is aiming to exclude. Incidentally, in Adol-C this ap-

10

do while time<timeE

call computeTemp(T)

if (T(0)>bT+delta) then

T(0) = bT

end if

time = time + step

end do

T(0)

time

bT

delta

Figure 9: An iterative model with nonsmooth behavior yields growing derivative
values.

proach is implicitly enforced by the compiler. Adol-C uses a specific active type
for active values, and they may not be used to compute plain floating-point
values unless one explicitly deactivates the value first.

Given the difficulty of implementing an analysis to determine indirectly use-
ful values and the large overhead of tracing all varied values, we compromise with
a limited extension to the notion of active variables by tracing all expressions in
control flow constructs and address computations directly involving active val-
ues but excluding all cases of computing nonactive values that use one or more
intermediate variables before the actual address computation takes place. While
this opens up the possibility of missing some critical constructs, it also permits
a tighter restriction on what is being traced as a first iteration. Other than the
size of the tracing data there is no problem with abandoning the compromise
and using just the set of varied values, should the first iteration not be able to
locate any problems. In Sec. 5.1 we discuss the practical implementation.

3.2 Growing Derivatives

In various practical applications of AD it was observed that particularly in
iterative models there are cases where the computed derivatives before a certain
iteration count oscillate and grow out of bounds. This situation was described,
for instance, in [3]. We do not presume any knowledge about the origin of
the nonsmooth behavior; for instance, it may well originate with an erroneous
implementation of a numerical method. A simple example will illustrate how
oscillating derivatives and the growth of the amplitude might be related to
switching between smooth subdomains. Consider an iteration internal to the
model that computes some physical state on a discretized domain but, because
of a condition, the state value is forced to attain another value. For example,
one might think of a heating process involving a phase change in which the
temperature T(0) of a material is forced down to a certain ambient value bT on
the boundary of the model domain, while the interior temperature T(i) with i

> 0 is not directly forced. Over the time steps one first observes a smooth rise in
T until the regime that governs the phase change triggers a nonsmooth behavior.
The situation is illustrated in Fig. 9. An oscillation of the derivative values can
originate, for example, from switching between two subdomains as depicted

11

do while time<timeE

if (a>aCrit)

then

a=a+updF1(a)

else

a=a+updF2(a)

end if

time=time+step

end do a

f

aCrit

1:updF1

f2 f1

2:updF2

3:updF1

4:updF2

Figure 10: An iterative model with nonsmooth behavior yields oscillating deriva-
tive values.

in Fig. 10. The solution to fixing the model behavior in this simple example
is obvious, but in complicated numerical models the effect of the updated in
combination with switching the model regime in the control flow may not be
obvious at all. Using the suggested tracing, one would, however, record the
switches in the control flow path based on the value of a. Both examples also
indicate that one has to consider the scope in which one wants to compare
traces. Here we assume a time-stepping scheme outside the “core” model we
are tracing, and this implies a comparison of traces for different time steps. If
a model already contains iterations (e.g., if we consider the time-stepping loops
part of our example models) one will have to narrow the scope to subtraces
within the model.

4 Examples

A study of a large computation with the MIT general circulation model is under
way. Here we illustrate the use of the tracing facility on three small examples.

4.1 Control Flow

Control flow decisions depending on active variables are illustrated in the exam-
ple in Fig. 11(left). Both the loop bounds and the branch condition depend on
the active input. The XML tracing elements representing structured control flow
constructs are nested accordingly. The <Cfval> element preceding a </Branch>

indicates what the branch condition evaluated to. Similarly, the <Cfval> ele-
ment preceding a </Loop> indicates the number of loop iterations performed.
The head routine is run at two points [0.5,0.75] and [0.5,1.75] for the inputs
[x1,x1]. For the first point the loop has three iterations, for the second point
four. The condition in the loop body always evaluates to false for the first point
and to true in the last three loop iterations for the second point. The output
files are shown in Fig. 12. The structure may become more apparent if the xml
file is viewed with a browser such as Firefox that has an appropriate style sheet

12

1 subroutine head(x1,x2,y)

2 real,intent(in) :: x1,x2

3 real,intent(out) :: y

4 integer i

5 !$openad INDEPENDENT(x1)

6 !$openad INDEPENDENT(x2)

7 y=x1

8 do i=int(x1),int(x2)+2

9 y=y*x2

10 if (y>1.0) then

11 y=y*2.0

12 end if

13 end do

14 !$openad DEPENDENT(y)

15 end subroutine head

1 subroutine head(x,y)

2 real :: x(2),y

3 !$openad INDEPENDENT(x)

4 y=0.0

5 do i=1,2

6 y=y+sin(x(i))+tan(x(i))

7 end do

8 !$openad DEPENDENT(y)

9 end subroutine

Figure 11: Example for control flow decisions depending on active variables
(left); example for tracing array indices in select intrinsics (right)

1 <Trace number="1">

2 <Loop line="8">

3 <Branch line="10">

4 <Cfval val="0"/>

5 </Branch>

6 <Branch line="10">

7 <Cfval val="0"/>

8 </Branch>

9 <Branch line="10">

10 <Cfval val="0"/>

11 </Branch>

12 <Cfval val="3"/>

13 </Loop>

14 </Trace>

1 <Trace number="2">

2 <Loop line="8">

3 <Branch line="10">

4 <Cfval val="0"/>

5 </Branch>

6 <Branch line="10">

7 <Cfval val="1"/>

8 </Branch>

9 <Branch line="10">

10 <Cfval val="1"/>

11 </Branch>

12 <Branch line="10">

13 <Cfval val="1"/>

14 </Branch>

15 <Cfval val="4"/>

16 </Loop>

17 </Trace>

Figure 12: Output oad_tr_001.xml (left) and oad_tr_002.xml (right) generated
for Fig. 11(left)

13

1 <Trace number="1">

2 <Call name="tan_scal" line="6">

3 <Arg name="X">

4 <Index val="1"/>

5 </Arg>

6 </Call>

7 <Tan sd="0"/>

8 <Call name="tan_scal" line="6">

9 <Arg name="X">

10 <Index val="2"/>

11 </Arg>

12 </Call>

13 <Tan sd="0"/>

14 </Trace>

<Trace number="2">

<Call name="tan_scal" line="6">

<Arg name="X">

<Index val="1"/>

</Arg>

</Call>

<Tan sd="0"/>

<Call name="tan_scal" line="6">

<Arg name="X">

<Index val="2"/>

</Arg>

</Call>

<Tan sd="1"/>

</Trace>

Figure 13: Output oad_tr_001.xml (left) and oad_tr_002.xml (right) generated
for Fig. 11(right)

for presenting xml files and allows an element and the contents nested inside to
collapse and expand.

4.2 Array Indices

It may not always be straightforward to determine which program variables are
being referenced, in particular if one uses array indices but the loop boundaries
do not depend on active variables. Consequently the trace will also contain index
values to help determine which data causes a change. Such a case is shown in
Fig. 11(right). We compute the head routine at points [0.5,0.75] and [0.5,3.75].
For the first point both calls to tan are in subdomain 0; for the second point the
second call is in subdomain 1. Looking at the output shown in Fig. 13, we see
that for each call to tan we also show the index of the active argument. This
allows us to easily pinpoint changes for certain elements in large arrays.

4.3 Call Stack

In the output shown so far, the listing of the line numbers and the nesting of the
respective XML elements provide some means of navigating the tracing output.
A natural higher level of XML element nesting would be the subroutine. For that
reason we also introduce subroutine calls into the trace. The example in Fig. 14
shows routines foo and bar called within head. We compute the head routine at
points 0.5 and 1.0. Because bar is called both within foo and directly in head,
it would be helpful to know the callstack at the point of a tracing difference.
For better readability the output shown in Fig. 13 has been reformatted with
xmlformat [4] and indicates that the only change in the subdomain (third line
from the bottom) is related to the call to bar made directly in foo. In the tracing

14

1 subroutine foo(t)

2 real :: t

3 call bar(t)

4 end subroutine

5 subroutine bar(t)

6 real :: t

7 t=tan(t)

8 end subroutine

9 subroutine head(x,y)

10 real :: x

11 real :: y

12 !$openad INDEPENDENT(x)

13 call foo(x)

14 call bar(x)

15 y=x

16 !$openad DEPENDENT(y)

17 end subroutine

Figure 14: Example for tracing subroutine calls

<Trace number="1">
<Call name="foo" line="13">
<Call name="bar" line="3">
<Call name="tan_scal" line="7"></Call>
<Tan sd="0"/>

</Call>
</Call>
<Call name="bar" line="14">
<Call name="tan_scal" line="7"></Call>
<Tan sd="0"/>

</Call>
</Trace>

<Trace number="2">
<Call name="foo" line="13">
<Call name="bar" line="3">
<Call name="tan_scal" line="7"></Call>
<Tan sd="0"/>

</Call>
</Call>
<Call name="bar" line="14">
<Call name="tan_scal" line="7"></Call>
<Tan sd="1"/>

</Call>
</Trace>

Figure 15: Output oad_tr_001.xml (left) and oad_tr_002.xml (right) generated
for Fig. 14

15

output the name of the top-level routine does not show up since the only call
to it is in the driver and the driver routine itself is not being transformed.

5 Implementation and Installation

In the following we provide some information on the implementation where it
differs from the OpenAD manual [9].

5.1 Analysis

The OpenAD [10] tool chain is the basis for the actual implementation. It uses
the activity analysis implemented in the OpenAnalysis [8] library to obtain the
set of active variables. The implementation follows the concepts of data being
varied and useful explained in Sec. 3.1. To permit a larger scope of variables
being traced, we can designate variables only by their varied status by calling the
whirl2xaif transformation stage with the -v flag. This flag triggers a modified
data flow analysis. Because this is not one of the common recipes, the option is
not provided by the openad script. Instead, one would typically use a makefile
for the individual transformation steps as explained in [9], Sect. 2.5.

5.2 Coverage

While the prinicpal mechanism discussed here is language independent, the
tracing trasnformation in the the language dependent parts of the OpenAD
toolchain have been implemented only for Fortran.

Control FLow Constructs: For structured control flow, loops and branches
are being traced; for each construct the iteration count or the condition
value is being reported. For general, unstructured control flow no such
output is being created. In practice it would require tracing the entrance
and exit of basic blocks by some identifier such as the line number, and
this feature is currently not implemented.

intrinsics: The following intrinsics trigger tracing output.

abs if the argument value is positive v=+ else v=−
division if the denominator is positive d=+ else d=−
ceiling, floor, int, nint, modulo the resulting value

max the maximal argument

min the minimal argument

sign if the sign of the first argument changed d=+ else d=−
tan identifying the subdomain as sd=bx+π/2)

π c

16

5.3 Installation

Because the algorithm is integrated into OpenAD, one can follow the installation
and build instructions given on the OpenAD website [7]. The website also
contains instructions about how to contribute to the OpenAD source. To rebuild
this document from the LATEX sources requires the OpenAD environment to be
set (see [9] Sect. 2.2) because the examples are being transformed and run as
part of the build process.

Acknowledgments

Utke was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy under Contract DE-AC02-
06CH11357.

References

[1] ADIFOR. http://www.cs.rice.edu/~adifor.

[2] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and E. Slusanschi. Efficient
and accurate derivatives for a software process chain in airfoil shape opti-
mization. Future Generation Computer Systems, 21(8):1333–1344, 2005.

[3] H. Martin Bücker, A. Rasch, E. Slusanschi, and Christian H. Bischof. De-
layed propagation of derivatives in a two-dimensional aircraft design opti-
mization problem. In D. Sénéchal, editor, Proceedings of the 17th Annual
International Symposium on High Performance Computing Systems and
Applications and OSCAR Symposium, pages 123–126, Ottawa, 2003. NRC
Research Press.

[4] XML Document Formatter. http://www.kitebird.com/software/
xmlformat/, 2006.

[5] A. Griewank. Evaluating Derivatives. Principles and Techniques of Algo-
rithmic Differentiation. Number 19 in Frontiers in Applied Mathematics.
SIAM, Philadelphia, 2000.

[6] A. Griewank, D. Juedes, and J. Utke. ADOL–C, a package for the auto-
matic differentiation of algorithms written in C/C++. ACM Trans. Math.
Software, 22(2):131–167, 1996.

[7] OpenAD. http://www.mcs.anl.gov/OpenAD, 2008.

[8] OpenAnalysis. https://openanalysis.berlios.de/, 2008.

[9] J. Utke and U. Naumann. OpenAD/F: User manual. Technical Report
available at http://www.mcs.anl.gov/openad/, Argonne National Labo-
ratory, 2008.

17

http://www.cs.rice.edu/~adifor
http://www.kitebird.com/software/xmlformat/
http://www.kitebird.com/software/xmlformat/
http://www.mcs.anl.gov/OpenAD
https://openanalysis.berlios.de/
http://www.mcs.anl.gov/openad/

[10] Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch. OpenAD/F: A modu-
lar, open-source tool for automatic differentiation of Fortran codes. ACM
Transactions on Mathematical Software, 34(4):18, July 2008. Article 18, 36
pages.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

18

	1 Introduction
	2 Usage
	2.1 A Simple Example
	2.2 Detailled Usage
	2.2.1 The Tracing Transformation
	2.2.2 Runtime Support Files
	2.2.3 Driver Routine

	3 Concepts
	3.1 Tracing and Activity Analysis
	3.2 Growing Derivatives

	4 Examples
	4.1 Control Flow
	4.2 Array Indices
	4.3 Call Stack

	5 Implementation and Installation
	5.1 Analysis
	5.2 Coverage
	5.3 Installation

